
Design Report
Improving the VS Code VerCors IDE plugin

April 26, 2024

Supervisor: Pieter Bos (FMT)

Group 3
Pascal Bakker 2814277
Rick de Vries 2794101
Denis Asenov 2824442
Jaron Lendering 2829355
Bram Ottenschot 2778653
Lucas Lalande 2758415

Abstract

This report documents the development of the VSCode VerCors IDE, a system developed for
the Design Project offered by the University of Twente as part of the bachelor Technical
Computer Science. The goal of the project was:

“To improve the VSCode VerCors IDE plugin by implementing standard IDE features and
integrating graphical progress information.”

The plugin is developed for the FMT group at the university. It is an extension to VSCode
allowing users to use the VerCors tool inside the VSCode IDE. This report describes the whole
design process, from requirements gathering to design choices, system testing and possible
future additions.

2

Contents

Abstract__ 2
Contents__ 3
1. Introduction__4
2. Domain Analysis__5
3. Requirements__ 8
4. Meetings___ 11
5. Design__ 12
6. Testing__ 24
7. Future Improvement__ 27
8. Evaluation__29
Appendix A - Meetings With Client___33
Appendix B - User Manual___ 34
Appendix C - Initial Planning___ 39
Appendix D - Snippets List___ 41

3

1. Introduction

The TCS design project is one of the two final modules of the Bachelor of Technical Computer
Science. After finally getting all the mandatory ECs of the study, the student can participate in
this graduation project. It tests the students' capabilities in setting up, following, and finishing the
design aspect of a development project, from the very first informal requirements meetings with
a client to presenting and delivering a well-documented result.

The project should be done in groups of 6 persons. Together with this group, a fitting project
should be chosen. From a list of around 50 projects, we narrowed it down to 5 possible projects.
Finally, we were assigned the “Improve the VSCode VerCors IDE” project by the Formal
Methods & Tools (FMT) chair of the University of Twente, with client Pieter Bos, who is a
member of the VerCors team. This means that the communication between us and the VerCors
team for example questions all goes through him. He is also our supervisor for the project,
which means that he also supervises and grades our work.

The project was about improving the VSCode VerCors plugin which was merely a barebone
structure. The plugin uses the VerCors tool which can verify concurrent programs with the help
of annotated specification language code blocks. We set ourselves three main goals for this
project which were (1) to better integrate the VerCors tool into VSCode; (2) to extend the IDE
features in the editor and (3) to graphically display the output of the tool instead of textual output
in the terminal.

We will start the report by making a domain analysis where we sum up and explain the basis of
our project, for each domain we briefly explain what it is, and how it affects or is affected by the
project. After establishing a steady base for the project we move on to the requirements of the
project, which were gathered through meetings and proposals, neatly organised in the three
main goals we set in this project. Then we show how we implemented these requirements in the
design part, first a global overview of the whole system, and then a closer look at the design
choices of each part. Furthermore, we talked about the meetings we had with our client, from
short standup meetings to showcases for the whole VerCors team. After that, we talk about the
testing aspect of the project, where we explain how we ensure the plugin behaves as it should.
At the end of the report, we speculate what possible future improvements can be made to the
plugin and we evaluate the module for ourselves on how well we organised the project and
ourselves during the module.

4

2. Domain Analysis

2.1 The client
We will be developing the plugin for VerCors. The VerCors team is part of the FMT group of the
University of Twente. Besides VerCors - which we will talk about in the next section - they also
develop several tools on top of VerCors, namely Alpinist, Vesuv and VeyMont. Most of the
VerCors developers use Linux as their main operating system. This might not seem like an
important fact, but became quite important during the development. We will come back to that
later. Most developers use IntelliJ as their preferred IDE, for which a VerCors plugin already has
been developed. Therefore, we will be implementing the VSCode plugin for the few developers
who use VSCode.

2.2 VerCors
VerCors - besides being a beautiful mountain arrangement in France - stands for Verification of
Concurrent and distributed Software1. The tool reasons about programs in several languages
using specifications. At the moment these languages are Java, C, OpenCL, OpenMP and PVL,
but support for more is a goal for the future. PVL is a simple language developed by VerCors
used for testing and demonstrating features. The specifications are contracts in the form of pre-
and post conditions. The following code snippet gives an impression of what the specifications
look like:

/*@
ensures \result == \old(x)+ 1;

*/

public int incr(int x) {
return x+1;

}

In this case, the developer stated in a post-condition that indicates that the return value of this
method should be 1 higher than x was before the method call. Using these contracts, VerCors
reasons about the correctness of programs, focussing on data-race freedom, memory safety
and functional correctness.

1 https://vercors.ewi.utwente.nl/wiki/#introduction

5

https://vercors.ewi.utwente.nl/wiki/#introduction

2.3 The current plugin
The client has indicated that someone already made a start on the plugin, from which we will
develop further. The plugin already includes some features:

- Syntax highlighting for PVL
- A run button
- A way to add VerCors to path
- A couple of run options with checkboxes for the backend, quit mode, verbose mode,

view progress, more error info and backend debug info.

The current version displays VerCors’ output in the command line, just like the non-IDE version.
Syntax highlighting in PVL exists but there is no syntax highlighting for other languages. Figure
1 showcases the supported command line options:

2.4 Software environment
VSCode plugins are written in TypeScript and executed using NodeJS. Therefore, we used
TypeScript to develop the plugin. For grammars (PVL and the specification language) we use
TextMate grammars. Most of the team members were used to writing grammars in Antlr, but the
VSCode API works with TextMate grammars so we were forced to use this. To implement
features of an extension, VSCode provides an API to access settings or visuals in the editor.

As mentioned before, there was already a foundation for the plugin. This meant that there also
was a GitHub repository owned by VerCors which we could use. We used Issues for all the user

6

stories that we defined. In this way, we did not need an external application like Trello for project
management. We followed standard Git protocols like creating a branch for each feature.
Besides the plugin repository we were also added to the GitHub repository of VerCors in
general, where we could ask the developers questions. Rick was also added to VerCors’ skype
group for quick questions. Lastly we could always contact the client via email. For internal
communication, we used both WhatsApp and Discord.

2.5 VSCode Extension
VSCode extensions all follow a certain uniform layout, they revolve around three main concepts:
Activation events, contribution points and the VSCode API. Activation events are events which
trigger the extension to do a certain action. Contribution points are static declarations where
contributions can be added to extend various functionalities, like new grammar, shortcuts,
languages or system-wide commands. The VSCode API lets you interact with the existing
components inside VSCode. With this API a user can change aspects of the user interface of
the system or influence certain processes under the hood

By combining these, data can be gathered by activation events, the UI can be changed by using
the API and functionalities can be extended by adding elements with the help of contribution
points. This abstraction makes developing a tool easier since certain aspects are accessible by
built-in functions, but it can be limiting when such functions are poorly documented and no real
examples exist online.

7

3. Requirements

Before we started designing the system, the requirements were gathered. The development
goals of the VerCors plugin for Visual Studio Code can be divided into three distinct goals:
Extending the IDE to work with the PVL files and PVL code blocks in comment blocks; Making
the command line tool work inside Visual Studio code so that it can verify supported files; And to
present the textual outputs of the tool in a graphical clear way.

3.1 Extending the IDE
Extending the IDE means that built-in IDE features that are already supported for more popular
languages like Java will also be supported for PVL code. This includes enabling users to click
on variables to see the definition and origin of these variables and highlighting the syntax so the
code is better readable. Later, code completion and refactoring support should also be made
available as well as basic code generation in the form of PVL templates for common code
structures like functions with parameters or for-loops. To streamline and improve the user
experience, the most prominent features of the plugin could be available as easy shortcuts too.

1 As a user, I want to be able to click on a variable to go to its definition.

The plugin must contain the functionality that clicking a variable in PVL takes the
user to the definition.

Must

2 As a user, I want keywords to be highlighted with different colours.
The Plugin must include keyword highlighting for PVL. Must
The Plugin must include keyword highlighting for the verification language inside
comment blocks in supported languages other than PVL.

Must

3 As a user, I want to generate templates with PVL code for basic code structures.

The plugin should include an option where it can generate a ready-to-use
template for common code structures.

Should

4 As a user, I want to be able to refactor all occurrences of a variable or function in
PVL code.

The system should change all occurrences of a certain variable or keyword in
PVL code or PVL comment blocks.

Should

5 As a user, I want to be able to use shortcuts to use and operate the plugin.
The plugin should include a shortcut to start a VerCors verification on the current
file.

Must

The plugin should include a shortcut to stop a VerCors verification on the current
file.

Should

6 As a user, I want to have autocomplete when writing PVL code.
The plugin could give the user suggestions when writing PVL code, which the
user can utilise to autocomplete code snippets

Could

8

3.2 VerCors in the Plugin
The plugin's main goal is to use the VersCors tool inside VSCode, an IDE. To make this work,
the plugin must be able to verify Java and PVL files, and later all other supported file formats
should work too. The tool in the plugin must have the same functionalities as the command line
tool, to visually represent these, checkboxes must be made that resemble these options. The
developers of VerCors brought up a couple of points that were helpful as well. For example, any
started VerCors process should have the option to be terminated since it may take too long to
finish. Because the tool is still under development, it could be handy to give the user a
convenient way of selecting which version of the tool to use. The setting for each file should also
be remembered so that the settings do not have to be filled in every time the user switches files.
The settings should be stored across different sessions, that is, restarting VSCode should not
reset any of the settings. Additionally, settings should be saved per-file.

7 As a user, I want to be able to run VerCors on all supported program files
The plugin must verify Java files. Must
The plugin must verify PVL files. Must
The plugin should verify c, OpenMP and OpenCL files. Should

8 As a user, I want to be able to toggle command line options.
The plugin must have checkboxes for each command line option. Must

9 As a user, I want to be able to terminate the execution of a VerCors process.
The plugin must have an option where the verification process can be
stopped and terminated.

Must

10 As a user, I want to be able to change the version of VerCors that the Plugin
is using.
The plugin could have an option so that different, locally installed,
versions of the VerCors tool could be selected and used.

Could

11 As a user, I want any configurations or settings to be saved.
Restarting the IDE should not reset the settings Must

Different files should have different plugin settings saved for them. Should

3.3 Visualising Output
One main issue of the current standalone VerCors command line tool is that the output can be
difficult to read, and difficult to match with the verified file. To improve this user experience, the
plugin will support a graphical representation of the tool’s output. For starters, it must show the
errors on the plugin view, and it should be made clear what part of the code the error is about.
The plugin should inform the user which part of the code it is analysing and verifying in real-time
while the tool is running so that a user knows which parts take a long time to check too. Another
flaw with the command line tool is that the progress of the process is displayed in printed
percentages, which do inform the user how far the tool is, but it lacks a clear graphical
representation, hence a progress bar must be included.

9

12 As a user, I want to be able to see a graphical representation of the errors
found by the tool within the IDE.
The plugin must highlight the errors identified by VerCors in the file,
and link them to said error.

Must

The plugin should show the errors identified by VerCors in a
structured representation in the plugin window.

Must

13 As a user, I want to know what part of the code is being checked while the
tool is running.
The plugin must include a visual representation of what part of the
code, and line number, the tool is being checked.

Must

14 As a user, I want to know how far into the tool's verification process is.

The plugin must visually inform the user of the progress of the
verification process through a progress bar.

Must

3.4 Changes of Requirements

During the process of developing the extension we managed to complete all the Must category
but the requirements 1 & 4 which are Must and Should respectively. The reason why they have
not been implemented is due to a requirement change discussed with Pieter - in order to resolve
‘variables’ in languages such as PVL it is necessary to parse the PVL syntax which is done
internally by the Verscors tool. An additional challenge would be to create a release of the
Verscors software so that we can extract the bin and point it to our extension which would be
difficult to test. An ideal approach would be to be able to integrate the verscors tool via the
language server so that resolution files can be passed internally without the /bin folder but this
was way out of the scope of this design project. Pieter suggested that we could extract the
resolution file but to do so it would be necessary to modify the source code of verscors. A
suggested alternative was to just provide the interface for this implementation, and as such we
decided to implement a language server, which provides hooks to compensate for the go-to
definition features. In conclusion, these features are implemented partially via the language
server that implements hooks that can be added and facilitate the development.

10

4. Meetings

During the module, our team had several meetings to ensure the quality of the product. In this
section, we will discuss which kinds of meetings we had and how they influenced the process.
Details on the content of the client meetings (including the meeting with the entire VerCors
team) can be found in Appendix A.

4.1 Standup meetings
Every week on Tuesday at 12:15 we had a standup meeting with our team. During this meeting,
we discussed the progress, since everyone was working on separate tasks. We also discussed
how to tackle the assignments for reflection. Since we also had a discord in which we were
actively discussing most days, we only had the need for one standup a week.

4.2 Meetings with client
Every Tuesday after the standup at 12:30 we had a meeting with the client. In the
design/requirements gathering phase, we used this meeting to ask questions and gather
information on what functionalities the plugin should include and what they should look like.

4.3 Meetings with supervisor
Since our client is also our supervisor, we combined the two meetings into one. However, for
both the client/supervisor and us it was important to distinguish the two roles and have separate
meetings. Therefore, each meeting started with a supervisor section, where we informed Pieter
on our overall progress, how we’ve been cooperating with each other and if there have been
any issues. We also discussed more of the academic side of the project - grading details,
deadlines and any additional requirements.

4.4 Meeting with VerCors
Besides a weekly meeting with the client, we also conducted a demo to the VerCors team,
where we showcased the features we had implemented so far, about halfway through the
project. We got a ton of valuable feedback from them, thus we had to adjust some requirements.

4.5 Peer review meetings
Once every two weeks there was a peer review session where we, along with 5 other groups
developing a product similar to us, got feedback on our product. We prepared a short
presentation updating our peers with the newest features of our project. After the presentation
we received questions and feedback. The other teams also presented their progress which was
interesting but not so useful for our project.

11

5. Design

5.1 System overview
The goal of the project was to create an extension that integrated the VerCors command line
tool into the text editor VSCode such that all functionalities of the tool could be easily used
inside VSCode. The design of the plugin can be divided into three main parts, the integration of
the VerCors tool inside VScode, the visualisation of the tool’s output and the extension of IDE
features for the Prototypical Verification Language (PVL) and the VerCors specification
language.

To sketch a better overview of how a user interacts with the different parts of the extension, we
will sketch a scenario in which a new user utilises the tool. It starts with a user installing the
extension, then before they can use VerCors they first have to choose the locally installed
version of VerCors by selecting the bin folder on their device. After this, the user can open or
create a file which is either written in PVL or has VerCors specification language embedded in
special annotated comments. The user can then choose the command-line-interface (CLI)
options by checking the boxes next to the option and running it by pressing the start button at
the top of the extension window. The user sees that a progress bar pops up in the bottom bar
which informs them how far the tool is in checking the file. When the tool is finished and the
progress bar has filled up, the found errors are gathered and printed in the problems tab,
together with other diagnostics. This scenario is also modelled in Diagram 1.

12

The tool integration part consists of most of the features shown in the extension window, such
as version selection and the CLI options. Version selection is as straightforward as clicking the
“add version” button and then navigating to the location on the computer where the version is
saved. Multiple versions can be added to the extension which is all saved so that a user can
easily switch between versions. The CLI options can be enabled and disabled by clicking the
boxes next to them. A user can also pin the options which are used more often, These pinned
options will then be shown globally at the top of the options list. The selected options are saved
for each file, so if a user switches to a file they have previously filled in options for, these will be
put back automatically.

In the command prompt, the VerCors tool outputs the verification in plain text. To make the
output better readable inside VScode the output gets parsed and displayed graphically. The
output of the tool both gives insight into the progress of the verification process and finally the
errors resulting from the verification. The progression is shown in the extension tab under the
start/stop buttons in the form of a progression bar with the current state of verification displayed
underneath. After verification, the tool also outputs the found errors. These errors are parsed
and shown in the problems tab, together with the error message, and the location of the error.

The extending of the IDE was done in the form of including IDE features in the VSCode
environment. In the code editor, this meant adding IDE features for PVL and the specification
language used for VerCors. When typing these languages either inside a PVL file, or inside
designated comment blocks, features will come up automatically. The first thing you see as a
user is that the code is highlighted which makes writing the code and inspecting it more
pleasant. Also while writing the plugin will make suggestions in the form of autocomplete and
snippets.

5.2 Global design choices
Some of the design choices were already made for us, with the already existing initial version of
the plugin - what languages we use, different views of the plugin page, etc. We built upon these
choices by using VSCode native styling, and despite modifying the file structure quite a bit, the
initial skeleton that was there can still be identified.

Language server was implemented later during the project due to the previously mentioned
change of requirements. This change implements a client server architecture which implies two
separately running instances.The server is launched via the client by creating a connection that
is passed to the server. This also required a change in the way the compilation and building of
the project is done as the extension needs to include the 2 components, client and server. The
advantages of this design choice are explained in more detail in the language server section.
The benefits are the implementation of the language server protocol via JSON RPC messages
which implies that the implementation for a language server can be compatible with different
IDE extension clients. Hence the same LSP could be re-used for different extensions.
Additionally optimisations in the control over the file with the webhooks which facilitate the
implementation of ide features such as error display.Finally it respects a fundamental concept of
computer science and maintainability of code bases by providing separation of concerns where

13

the extension can be developed with most logic in the server thus improving code quality and
readability as well as prevent some bugs from being introduced.

5.2.1 Language server
In order to improve the extension we made the conscious choice to include a language server.
The reasoning behind this choice was to make the code more maintainable and add easy
support for autocompletion, syntax highlighting, structural snippets, as well as allow for future
features like go-to definition and even a continuous verification mode.

Most of those features can be implemented separately without a language server, however the
language server has benefits in terms of performance, maintainability and portability as it
implements the Language server protocol2. As not all VerCors users use VSCode, it is within
reason to believe the extension might be adapted to other IDEs in the future, and our design
choice makes this a much easier task.

2 https://microsoft.github.io/language-server-protocol/

14

https://microsoft.github.io/language-server-protocol/

5.3 Detailed design
Apart from big design choices, all smaller parts of the project have been carefully thought about
as well. Hence, we will discuss the design of each part of the project here in more detail. We will
talk about the design choices in the form of how certain requirements or preferences from the
client shaped elements of the final product accompanied with screencaptures.

5.3.1 Version selection
One of the requirements states that the plugin should allow users to easily switch between
different versions of VerCors. Therefore, the plugin contains a section in the view that is
dedicated to version selection, as shown in Figure 3. Versions are added through the button,
which opens a file selection dialog and lets the user select the VerCors binary executable. After
selecting the executable, the corresponding version appears in the list. The version is detected
by running the command with the --version argument. If two executables output the same
version, their paths are included in the list to differentiate them more easily. The selected path is
always visible when hovering over the version. The selected version is highlighted with a blue
outline and the user can easily switch by clicking on another version. Every version can also be
removed by using the X button. In addition to release versions, we also support versions in
development, as they are added through the user selecting the binary, rather than a directory in
which to look for a specific “vercors” executable.

5.3.2 Snippets
The requirements state that “the plugin should include an option where it can generate a
ready-to-use template for common code structures”. This is how we interpreted the requirement
at first - for the users to define their own snippets. After quickly realising that allowing users to
define their own snippets would be significantly more difficult than providing a set of snippets
ourselves, we decided to reformulate the requirement. In the VerCors Skype we asked all
developers for common code structures which could be implemented as snippets. With this list

15

we managed to add support for the most common quantifiers and keywords that have a bigger
structure following them, e.g. \forall. An extensive list of supported snippets and their
corresponding keywords can be found at Appendix D.

5.3.3 Command Line Options
As any command line tool, VerCors came with numerous command line options that alter the
execution of the tool. To support this, we created a window with a list of all these options:

As Figure 4 showcases, users can freely toggle any option and the extension will run the tool
with it. Since there are many options, we decided to hide them by default, and let users decide
which ones should be shown through the pin feature. If the “Hide Options” button is pressed, all
options that are pinned will remain visible, as well as any options currently active.

Since some options take various arguments, an input field for those is added, and in some
cases a file upload.

16

Pinning is a global feature - all pinned options will remain visible regardless of the file currently
open, however which options are actually checked is file-specific. This means users can have
different options for different files.

To allow for these options to be extended in the future, they are generated via a JSON file,
which contains an entry for each option, alongside some setting parameters for it:

● name - the name of the option with which it will be shown in the extension.
● description - short description of the option, which will appear as a hover tooltip.
● skip - boolean value to determine whether the option should be skipped when generating

the view; this is useful as some options are on by default and cannot be changed. This will
be expanded on later.

● arguments - signifies that the option takes an argument so an input field will be created for
it. The string value of the argument key will be used as the placeholder for the input.

● input - currently only used for the “--backend-file-base” feature, it creates a button with a
directory selector dialogue, out of which the path will be extracted and used. It can be used
for other options in the future.

In addition to these parameters, each option belongs to a category to help group them via
common features.

By default, some options are enabled and this cannot be changed - “verbose” mode and
“progress” mode. They are crucial to the functionality of the extension, as without them the
VerCors tool does not output any information about the execution, hence the progress bar and
displaying errors would fail to work. Additionally, options like “version” and “help” would do
nothing, which is why we use the “skip” flag. We decided to keep them in the JSON file with all
the options in case future VerCors developers have other ideas.

5.3.4 Displaying VerCors output
A big part of the project was to present the output of the VerCors tool in a visual way. In the
current state of the tool these textual outputs consist of progress messages, debug messages
and error messages. To access, process and show these messages we had several options.
One option was to alter the VerCors tool itself to output certain data structures like JSON to
parse the messages in a fast and easy way. Ultimately we steered clear from this idea because
this meant that next to developing a VSCode extension, we should also study, change and test
the tool. Because this was out of the scope of this project, we opted to parse the messages line
by line as they were, using regular expressions (regexes). Regexes were easy to use and we
had some experience in working with them. Javascript and typescript have good built-in regular
expression support, so it was the most apparent choice.

For the progress, The command line tool prints it in a uniform way like in Figure 5. It always
starts with the global progress expressed in percentages, then the current stage of the
verification process followed by the step inside the current stage. To access this we found that
the best way was to use regular expressions to match the lines and extract the information
using groups.

17

To display the progress we implemented a progress bar which displays the progress of the tool
together with the current state it is in. More details on the progress bar can be found in
subsection 5.3.6. During testing we found that parsing the progress failed on some machines,
but it succeeded on others. After debugging we saw that some machines displayed decimal
numbers using a comma, while others printed point-separated numbers. Luckily we could easily
change the regexes inside the code to cover this problem.

Especially for displaying the errors, we considered introducing a hook to the VerCors tool. But
as discussed before we decided not to, and instead opted for line-by-line parsing with regexes.
To explain how we parsed them we will first look at how errors in VerCors are presented. As you
can see in Figure 6, each error is printed between two ‘=’-lines. Inside these lines, the error is
displayed by multiple error parts. Each part is about a different part of the code concerning the
error and consists of three separate sections separated by ‘-’-lines, they always follow the same
structure of sections, first the location of the part, then the code piece the error shows up in
followed by an error message. One VerCors error can consist of one or multiple of these error
parts. Because these errors are not set structures but are parsed line-for-line we work with
stages. When the parser sees a ‘=’-line it knows it is parsing an error, so it can handle all the
different parts, when it sees that the error is parsed, it combines all error parts and puts the
whole error in a data structure, ready to be dealt with.

After the errors are parsed from the output, they are all saved in a data structure and they
should also be displayed graphically in VSCode. We had two main ideas to do this: Displaying

18

them in the extension view and displaying them in the diagnostic window where all the other
errors and warnings are also put. We addressed the choice to the client who answered that
displaying them inside the problems tab would fit the plugin better also since this was the case
in the already-existent Intellij plugin.

The VSCode API offers the functionality to make a separate diagnostic collection where errors
can be put in. The errors in this collection would then be published inside the problems tab in
the VSCode view. Each error consists of a primary location in the file, an error message and
so-called related information. Which are smaller errors with an error message and a location as
well, in other words, one error item in the diagnostic collection can contain multiple locations
and multiple error messages. This option fits perfectly with the VerCors errors, where an error
can concern multiple places in the code.

As you can see in Figure 7, The errors have one central error message, which are all error
messages of the error parts concatenated together. In this example, both errors also have a
secondary location in the error expressed as a related information item under it. If a user clicks
on any of the errors, both main error and related information error, the user’s cursor will be sent
to the location in the file. Each error points to a place in the code, this can be seen in the editor
similar to other diagnostic errors, by a red squiggly line underlining the error

5.3.5 Autocomplete
In order to implement the autocomplete we decided first to integrate a language server in the
architecture that would also facilitate other features. This was done based on an lsp-sample3

provided as an example from the open source Microsoft repository on Github. After this we had
to modify to generate completion lists that would be called in the onCompletion hook:

3 https://github.com/microsoft/vscode-extension-samples/blob/main/lsp-sample/server/src/server.ts

19

https://github.com/microsoft/vscode-extension-samples/blob/main/lsp-sample/server/src/server.ts

The JSON list was generated through the list of keywords specified by the tmLanguage that was
already provided by the previous VerCors developer. It was necessary to extract the token from
the regex as the language server was not supporting regex in its completion list. When the lists
are generated, launching the extension provides the completion of a selected suggested item if
one edits a substring in the supported languages.

5.3.6 Progress bar
The progress percentages as given by VerCors are parsed and sent to the progress bars, where
they are updated. Initialization of VerCors does not provide any percentages, so a loading
animation appears while the tool is starting (see Figure 10). After the tool has begun verification,
the progress bar appears and is updated live alongside the verification progress. Besides the
current percentage, it displays which state the verification is in.

Figure 10: Starting VerCors.

There are 2 progress bars. One in the plugin window (Figure 11) which can be hidden, and one
in the status bar (Figure 12) which is always visible. The progress bar in the plugin window
hides itself automatically after verification has completed or the process was terminated.

Figure 11: Progress bar in the plugin window.

20

Figure 12: Progress bar in the status bar.

The VerCors tool sometimes outputs incorrect percentages. These are dealt with internally so
the progress does not retrogress.

5.3.7 Shortcuts
Although Shortcuts are a small and easy to add addition to a rather big extension, they were a
requirement from the client, and deserved to be thought about. There were two main actions
that required shortcuts, which were starting a VerCors verification process, and terminating a
process. Later we were looking at other actions in the extension and decided that a shortcut for
adding new VerCors versions could be a welcome addition as well.

VSCode already has a lot of keybindings for most actions inside the editor. So after analysing all
already existing shortcuts and testing loads of combinations we ended up using the ctrl+shift
modifiers for the shortcuts in combination with a letter on the keyboard. If a user wants to start a
verification they can simply press the button combination CTRL+SHIFT+L. If a user later wants
to cancel the VerCors process the buttons CTRL+SHIFT+Q have to be pressed simultaneously.
And to add a new version, CTRL+SHIFT+J can be used. Additionally, CTRL+/ will create a
comment block while focused on the text editor if it’s in one of the supported languages.

If a user is not comfortable with these keybinds, they can change them through the VSCode
settings.

5.3.8 Starting/Stopping
While implementing all the cool features to interact with vercors, running VerCors itself shouldn’t
be forgotten. Without it, the plugin would be useless. That is why we created quick and easy
ways to run VerCors. The first way is to go to the VerCors version view and press the start or
stop icon. However, to use this you need to have the VerCors plugin tab always open. That is
not the most user-friendly way, so a second button is also added. On the bottom left of the
status bar, there is also a start/stop button. That button is always visible, so easier starting and
stopping is accomplished.

The way VerCors is started and stopped is pretty straightforward. When the start button is
pressed, the language used is checked. If the language option is not used, the plugin looks at
the file extension of the selected file. If the file extension is not C, PVL or Java, it will throw an
error. If everything is correct, it will run VerCors with the selected options in the shell.

When VerCors has to be stopped before it is naturally finished, the tree-kill function will be
called. The tree-kill function stops a certain process and every process that the main process
creates. This way, all subprocesses created by VerCors will be stopped.

21

5.3.9 Syntax Highlighting
The extension came with some limited highlighting for PVL files. We extended this support
through the grammars used by the plugin, and now syntax highlighting can be seen in PVL,
Java and C files. For the latter two, it only works within a comment line or block, as the VerCors
language specifications only work there.

Currently, VerCors keywords are recognised and coloured as a few different types, so the
colouring is arguably somewhat limited, and as such, within the list of future improvements for
the plugin, adding to the colours is one of them.

Setting up the grammars well was also crucial in later features, like Autocomplete (5.3.5), as the
auto completion mechanism also relies on the grammars.

5.4 File structure
The root project folder contains a package.json file with the extension and language
configurations and dependencies. Since the design is split into a client and server, their files
have been split into different folders as well. This way, both the client and server are separated
into their own packages with their own dependencies. The package.json file has been
configured to compile both.

5.4.1 Client
The client contains a number of files. Most of which contain a single class or interface to ensure
proper modularization and enhance maintainability. The files have the following purposes:

● comparing.ts - Utility class to compare sets and lists.
● extension.ts - The main initialization file that sets up the extension and runs the language

server when VSCode is started.
● output-parser.ts - Used to parse VerCors’ textual output and redirect actions to the right

destinations.
● progress-receiver.ts - Interface used to update progress as provided by VerCors.
● status-bar.ts - Represents and manages the plugin’s status bar section including the

start/stop buttons and progress bar.
● vercors-options-webview.ts - Manages the plugin window tab that includes all the

command line options, and manages the pinned options and selected options per file.
● vercors-paths-provider.ts - Manages all the added VerCors versions including their paths

and which version is selected.
● vercors-run-manager.ts - Used to start and stop the VerCors tool.
● versors-version-webview.ts - Manages the plugin windows tab that includes the VerCors

version selection.
● webview-connector - Interface used in backend to receive messages from a VSCode

webview’s frontend.

22

5.4.2 Server
The server simply consists of the server.ts file which starts the language server, as this is still a
minimal feature of the plugin.

5.4.3 Resources
The resources folder contains various SVGs and PNGs used on the frontend, as well as the
following files:

● command-line-options.json - Contains details about all the command line options that
VerCors supports.

● html/vercorsOptions.html - Web page for the CLI options webview of the plugin. Uses the
command-line-options.json to generate a toggleable checkbox for each option. More details
in section 5.3.3

● html/vercorsPath.html - Web page for the paths provider webview. Details in section 5.3.1.

5.4.4 Syntaxes
This folder contains TextMate Grammars for PVL, as well as for VerCors code inside of PVL,
Java and C:

● comment-injection-java-c.tmLanguage.json - Used to add matchers for comment blocks
and lines that start with an “@”, to then inject the VerCors specification inside.

● language-configuration.json - Contains the language configuration for PVL.
● spec-injection-grammar.tmLanguage.json - Injected into the comment specification for C

and Java, this file has VerCors keywords to be matched and highlighted.
● pvl.tmLanguage.json - Language grammar for PVL.
● pvl-language-configuration.json - Language configuration for PVL.
● snippets.json - Adds autocompletion for code templates that involve bigger structures
● language-server-pvl-matches.json - Matchers for the Language Server’s autocompletion

for PVL.
● language-server-java-c-matches.json - same as the above, for C and Java.

23

6. Testing

When creating an application, testing is of the utmost importance. For creating a plugin, it is no
different. However, vscode has only a little information about testing your extension. That is why
we had to find ways of testing the VerCors plugin. We have divided testing into 2 main
categories, manual and automated testing.

6.1 Manual testing
Manual testing is done for most of the extension. Every time a functionality was created, 2 team
members who did not work on that functionality tested everything manually. The fix for the
functionality itself was tested, but the earlier implemented functionalities were also tested. This
was done to make sure that no functionality was broken by the creation of a new functionality.
This worked quite well, but it was boring labour and not sustainable if the extension would grow.
That is why we also created a system for automated tests.

6.2 Automated testing
Vscode has some standard practices for automating code, but they are pretty minimal. They are
mostly meant for small unit tests. However, we wanted to be able to test big parts of the system
because a lot of things work together and the created tests look more like real actions a user
could take. That makes the process of going from manual testing to automated testing easier.
To create such a testing environment, we decided to divide the automated tests in 3 parts:
storage tests, backend tests and frontend tests.

6.2.1 Backend Testing
In this project, backend testing is defined as testing the resulting call send to the frontend after
getting a call from the frontend. We defined it as such because api calls are the input and output
of the backend. If you see the backend as 1 black box, a call from the frontend would be the
input and a call from the backend would be the output. This way, the automated test would be
as close as it can be to manual testing. It also increases the test coverage, because a lot of
functions are used when you go from call to call and all of them are tested in 1 test.

While making the tests, a lot of problems occurred. Vscode extensions look like a website from
a programming perspective because it has a clear backend and frontend (written in html) and
they communicate using API calls. However, the backend can still use many features from the
operating system. In testing, some of those operations were not possible or undesirable. That is
why we decided to mock some functions. Keeping those mocks to a minimum was a main
priority, mocked functions cannot be tested.

In the end, we mocked a great deal but they can be mostly divided into 2 main categories: file
mocks and frontend mocks.

24

6.2.1.1 Function mocking
File mocking is done to ensure that as few files are used as possible. Ideally, no files would
have been accessed, because that prevents accessing or destroying the wrong files, but that
was not possible. To mock the file system, mock-fs is used. Mock-fs redirects any calls done
with fs to a fake file system. In a similar way the workspace settings are mocked. However, one
part of the system runs VerCors to check if the given VerCors version is correct. We thought it
would still be valuable to test because the shell can run differently on different operating
systems. By putting VerCors in a folder called fakeVercors we made sure that we could still test
it. Unfortunately, this means that real files had to be accessed. To prevent accidental file
manipulation of wrong files, we created 1 variable called vercorsPath that has the full path to the
fakeVercors folder.

Now we can access the necessary files, but sending or receiving messages is still impossible.
That is why we also mocked the frontend. Frontend mocking is done by creating a fake
frontend. The frontend is passed to a WebviewViewProvider in the form of a WebviewView. A
WebviewViewProvider handles all calls from and to the frontend using the WebviewView. The
WebviewView has a webview object and it can send or receive messages using their respective
functions. By mocking the function that sends messages, we can log those sent messages and
thus check what is sent by the backend. The code is structured in a way that makes it easy to
mock receiving messages because everytime a message is received, the backend calls
receiveMessage with the message as an argument. So to mock receiving messages, just calling
the receive function with a certain message works. Our extension uses multiple
WebviewViewProviders that can all use different functions. To ensure that there is always an
explicit receive message function, the WebviewConnector interface is created. Every
WebviewViewProvider implements that interface.

Now we can send and receive messages, but not the entire frontend is handled by the webview.
Warning and error messages are shown by vscode itself, so they are mocked by checking if the
vscode api called them.

The last important mocked part is not in one of the aforementioned categories. It consists of one
mocked object, namely the extension context. When the extension is started, an extension
context is created. However, we couldn’t access the context while testing, because the standard
testing package we used (@vscode/test-electron) doesn’t allow that. A better testing
package was hard to find, so we tried to mock the extension context. After setting some
elements, mainly the path, we had enough to use this fake context in place of the real one.

6.2.1.2 Testing
After the mocked functions were created, real tests could be made. We focused on testing the
possibility of modifying and getting the VerCors path and options. Nothing else is tested in these
backend tests because they test the most important components testable by backend tests.
There are some frontend features, like keyword highlighting, that need different testing
practices. Other features, like the progress bar, did work with calls to and from the frontend, but
because of time constraints, we decided to not test it. The most important feature of the
extension is running VerCors with the right options, so that is what we focused on.

25

Since a lot of work was done after to have a well-running backend for the tests, making the tests
themselves was not extremely hard. Every test is done by sending a command to the backend
and evaluating the command sent back by the backend. To test if the correct command was
sent back, a new assert function was created: failOnJsonEventAbsence. Every command is
structured as a JSON object, so this function checks if the right command is sent by comparing
the expected JSON value with the logged JSON values.

6.2.2 Storage Testing
Vscode extensions have a small storage system to store certain values after the extension is
closed, a settings file. Because it is just a file, it can be changed in unexpected ways. That is
why a whole set of tests is made, only to test storing the options and path values.

To make sure that no real files were changed, the settings file was mocked by creating a
dictionary, now called fake settings, that acted like the settings file and having any command
changing the settings file be redirected to the fake settings.

We tested the set and got functions by attempting to set or retrieve specific values from the
settings. We could observe what would happen if the settings file became polluted with incorrect
values by beginning the settings at different values.

Return values could be JSON-like, array-like, or just plain text. This difference in return values
prevented the use of normal equal methods. That is why we created unique equal methods and
used them in unique assert.equals that accept custom equal methods. Normally, the package
chai would be used for this, but chai broke constantly so we made our own equals method.

6.2.3 Frontend Testing
Although storage and backend tests were finally completed, frontend tests were excluded due to
time constraints. If we had time, we would have simulated button presses with webDriverIO and
seen what results they returned. With that information, tests could be made to check if all
backend calls were made appropriately. The majority of the frontend's visual testing would be
done by hand, however, some could be done automatically. One such automated task may be to
verify whether keywords are correctly categorised for keyword highlighting.

26

7. Future Improvement

We have deployed the VerCors VSCode plugin as a finished product, but that does not mean it
can not improve. In this chapter we discuss features that can be added in the future, and the
structure we have provided to ease the development of these features. Since the system is not
only available to the VerCors developers, but also to the public on the VSCode marketplace
more features could be requested by the public.

7.1 Language server
As explained in Chapter 5, we have implemented a language server in the plugin. Some
features in 7.2, like go-to-definition are not easy to implement and require a language server.
Because we already have the language server in place, adding these features in the future
becomes a much simpler task. Besides this, the language server can also be extended to other
IDEs, since it works with the language server protocol.

7.2 Additional features
The following features either were part of the initial requirements but were dropped since they
were out of scope for the design project or are simply ideas by us or the developers thought of
during the implementation phase:

● Continuous verification: this feature was not a requirement, but was planned by the
developer before us. Having this feature would allow the user to toggle continuous
verification mode on and off. When it is on, running the VerCors tool on the current file would
not require pressing the run button, but would happen for example after saving.

● More snippets/user snippets: the snippets that are implemented are all requested by the
users, but currently it is not easy to add snippets. Although VSCode allows users to define
their own snippets, it could help to make this a more accessible feature within the plugin.

● Go-to-definition: This feature, together with the next two features were requested by the
client but are not included in the final product. More on the reason behind this can be found
in chapter 8.1. Having this feature would mean that control-clicking a variable in PVL would
show the user the point in the file where the variable was declared.

● Refactoring: Having this feature would mean that a user can refactor all occurrences of a
variable. This should not be done by simply searching for the string in the file, but should
only replace occurrences that have the same semantic meaning.

● Line-by-line in file: Having this feature would mean that while the tool is running you would
not only see progress in the progress bar, but also in the file that is being verified itself. It
would show exactly which line of the program the tool is currently verifying, which helps in
more easily understanding why it gets stuck at a certain point.

27

● More keyword types for VerCors keywords: currently most of the keywords are all the same
type, so they get coloured in the same way by the syntax highlighter. It can be beneficial to
have more types, so that it’s easier to distinguish between different keywords.

28

8. Evaluation

8.1 Requirements
Go to definition has not been implemented for PVL and other languages within the scope of this
project. The main reason being that after discussing with Pieter we discovered it required
adding a parsing stage to the VerCors project, running the stage and compiling the project to a
bin that we could then use within our tool. After discussing and defining that the main focus of
this project is working on the VerCors IDE features and not modifying VerCors itself. We decided
to not include this feature. In the future, given that a resolution stage of variables is integrated
within verscors it will be relatively easy to implement using the language server.

A similar case holds for seeing the progress in the file: this is a feature that was initially included
in the requirements, but was dropped later. After discussion with the client, it became clear that
this feature also requires the modification of the VerCors tool itself, since now it does not
provide sufficient information about which exact line in the file the tool is processing. We agreed
that this is out of scope for this project since the focus should be on the plugin features and not
on modifying VerCors.

8.2 Teamwork

8.2.1 Rick
I enjoyed working on this project with the team. Developing an IDE plugin was new to me and
the learning curve was steep.

I implemented snippets for the verification language. I also looked into the language server
before Lucas took over. In this report I wrote the following sections: Abstract, Domain Analysis,
Meetings, Future Improvements and User Manual. Besides that I was in contact with the
VerCors developers via Skype. I also designed slides and presented our progress at the peer
feedback sessions.

8.2.2 Bram
Working on this project was a new experience for me, I have never worked on building an
extension before, so the project took more research than I expected. The teamwork went well
overall, prior to it I did not know half of the group, but I would say that nonetheless working
together went well.

I first worked on the syntax highlighting part, and later on the error parsing, and error
presentation in the VSCode editor and problems tab. For the report, I wrote the introduction, the
global system overview and the detailed design description of the aforementioned project
contributions.

29

8.2.3 Jaron
This project was the first big project I have ever done with a team. There were some challenges,
like implementing a language server, but it went generally pretty well. I focused mostly on the
backend part of the options and the automated tests. I liked finding ways to test it that first
looked impossible to me. The teamwork in this project was exceptionally good in my opinion.
We had weekly meetings where the attendance was good and everyone did what they were
supposed to do. If someone had questions, they would be answered rather quickly. I think that
that really increased the motivation for this project within the team.

8.2.4 Pascal
Everyone in the team was specialised in their own part and equally motivated to deliver a good
product, which resulted in a good collaboration. I developed an IDE plugin before which I used
during the Programming Paradigms module to run and add syntax highlighting for the ILOC
language. However, that was in IntelliJ, which uses Java instead of TypeScript. I also never
worked with VS Code, so the whole environment was new to me but it was relatively easy to
understand. However, the VS Code API does not have very good documentation, so we had to
rely a lot on example projects. I started the project by working on the part that handles version
selection, including frontend and backend. This also included the progress bar, which directed
me to work on the status bar too, since those two are similar features. For the backend, I
ensured consistent file naming and modularisation were used, and for the frontend I made sure
the menus fit within the VS Code style and worked across different themes.

8.2.5 Denis
Throughout my bachelors’ I mostly worked with the same people over and over, so at first this
project was a bit worrying - having half of my team be people I didn’t know. I however quickly
realised that it’s not an issue whatsoever as we all clicked very fast and our teamwork was very
good.

I initially worked on researching how the grammars for the plugin worked, and then focused on
the command line options. I also somewhat helmed the organisational duties, although that was
a collective effort. Everyone did their part and if someone wasn’t on track, they would reach out
for assistance.

8.2.6 Lucas
I am used to multidisciplinary teams due to the fact I already work in the software industry and
with agile methods.This time it was really pleasing working with this group as Rick was doing a
great job keeping everyone on track and I could feel that everyone was making efforts to be
proactive. In addition it is one of the projects where I felt that everyone contributed significantly.
The teamwork was really good and no hiccups as no one was against working when something
was urgently required which was really nice. One point of improvement could be punctuality in
meetings and consistency (Mainly lacking on my side) but we found ways around it when
someone wasn’t available. In retrospect this was a really good group !

30

I worked initially on the go to definition feature which then turned into implementing the
language server. I also helped with debugging as I have experience with nodeJS and TypeScript
in general. After implementing the language server I also worked on implementing pre-set
keybinds for the extension and I also implemented auto completion in JAVA and PVL files using
the language server. I usually was consulted by other teammates when something was not
working within their app concerning Node or packages or when there was an issue with
launching the extension.

8.3 Process
Very early on, we settled on working with an agile methodology, following some scrum practices
with weekly meetings between the team and our supervisor/client. This workflow seemed the
most suitable for the project, as the initial requirements were somewhat vague, so having
continuous feedback from the supervisor and client was important in ensuring that the project is
a success. It also helped us as a team stay up to date with what has been done over the past
week - many of us had other responsibilities outside of the scope of the project so having a
concrete weekly meeting to catch up on anything you might’ve missed was quite nice.

To establish a good workflow, we also followed many version control practices through GitHub.
We started by creating issues for each requirement that we initially had, as well as other things
that came up during the project. Each issue was resolved in a separate branch, before creating
a pull request and having it reviewed and tested by at least one, but usually two other team
members, and finally merged into the main branch, where a working version was always
maintained.

As part of the workflow, we loosely divided the project into phases: Requirements gathering and
evaluating - in the first week or two, we were still unsure of the specifics of the requirements,
how important they were to the client and how feasible it was to implement them. As such, those
first two weeks were spent focusing on researching more about the project and how each
functionality is typically implemented in other, similar applications.

After that, for almost the entire rest of the project, we were in a continuous phase of
implementing features, demonstrating to the client and adapting them when necessary. In the
last 2 weeks we focused on finalising our tests and making sure the project can be deployed.

The communication within the team was immaculate - everyone participated and was available
when in need. If a member required assistance for their assigned task, we would look at
different solutions like who is best suited to help them in the case of a more complex problem, a
quick response from whoever is first available if its something simpler, or reassigning a different
person to the feature altogether if we decide it will benefit us all. Everyone stayed up to date
with almost all features of the project.

8.4 Planning
As aforementioned, we decided to work with scrum, and early on set on two-week sprints. We
figured this is a good amount of time to be able to knock down features and have somewhat of a

31

demo for the client at the end of every sprint. If we look at the initial planning we made in the
project proposal (Appendix C), we divided the tasks each sprint into the three main goals we set
at the start of our project, extending IDE, Integrating VerCors and Visualising Output. We found
that this division helped us with keeping a clear overview on what has to be done, and ultimately
for what goal it is implemented as well as for dividing the tasks among the team. The
requirements were ordered in a way such that requirements which depended on others were
planned later on in the project.

In hindsight, on some parts we were a bit naive and lacked a more thorough understanding of
how VSCode extensions completely worked, this caused us to wrongfully estimate the time of
some requirements. Especially the requirements concerning language servers were put on the
back burner since figuring out how they worked took more time than expected. Luckily our
planning left room for these unforeseen setbacks since we initially left the last sprint open for
any overflow of requirements from the other sprints.

32

Appendix A - Meetings With Client

Meeting on 27th of February
This was the first meeting where we, together with other members of the VerCors team, were
discussing the project and discovering requirements. At this point, we did not have a complete
view of what the project should be, so we asked the client to briefly explain what the project was
about. Sequentially, we walked through all the project goals they listed in their proposal.

Meeting on 5th of March
The second meeting was primarily about discussing our project proposal and finding
confirmation in the way we rated the importance of the requirements.

Meeting on 12th of March
This was the first acceptance test meeting where together with the client, we walked through all
parts we have worked on in the past couple of weeks.

Meeting on 19th of March
During this weekly meeting, we did not have a lot of things to discuss, but we did have a quick
question about where all the possible error messages were saved.

Meeting on 26th of March
For this meeting we arranged a gathering with the majority of the VerCors team, to do a demo of
the progress so far.

Meeting on 16th of april
This was the last meeting of the project. It was also the first meeting since the demo on 26/3, So
we briefly discussed the newer requirements which came up during the demo.

33

Appendix B - User Manual

Version window
By selecting the VerCors icon in VSCode’s Activity Bar (visible in figure 13), the VerCors side
bar opens. This window provides several features. Firstly, it allows users to add and remove
VerCors versions. Pressing the ‘Add VerCors Version’ button opens the file browser, allowing
users to select the VerCors executable from their installation. This file is often contained in
VerCors’ bin folder and is named vercors.bat. When a version has correctly been selected, the
version appears in the window like in Figure 13. Secondly, located in the top right corner are the
start and stop buttons. When having a PVL, java or C file open in the editor, the start button
allows users to start the verification of the open file. The start button is also located at the
bottom left corner of the screen and can be run using the shortcut CTRL+SHIFT+L. The stop
button will replace the start button in the bottom left while running and can be run using
CTRL+SHIFT+Q.

34

Option window
Figure 14 shows the full VerCors sidebar. The options tab initially only contains the backend
option, but after pressing ‘See all options’ all available CLI options are available, as can bee
seen in figure 15. Users are able to select options (e.g. debug mode) and pin them (e.g. custom
flags and debug mode). The pinned options remain visible when ‘hide options’ at the bottom of
the window is pressed. Pins and selected options are file specific, so each file can have a
different configuration.

35

Problems window

After verifying a file, VerCors may have detected errors in the program. These errors appear
both in the active file as can be seen in figure 16 and in the problems tab as can be seen in
figure 17. Pressing on the error message in the problems tab places the cursor at the location in
the file.

Snippets, highlighting and autocomplete
Figure 18 shows a small part of a PVL program. Keywords like loop_invariant and int are
automatically highlighted. While typing, autocomplete suggestions and snippets will appear.
Snippets appear as squares and can be selected by pressing tab after selecting it with the
arrows.

Installing from marketplace
Installing the plugin from the marketplace is currently not available. To publish an extension on
the VSCode market, it must abide by a number of rules, mostly due to security. One of the
requirements is to not have SVGs in the project4, which we unfortunately have multiple of. We
only found out about this at the end of the project when looking into publishing it, and as such
we haven’t had time to replace these SVGs. It is an involved process of reading the new image
files from the backend and sending them to the frontend, as you cannot reference them directly
from the HTML views.

4 https://code.visualstudio.com/api/working-with-extensions/publishing-extension

36

https://code.visualstudio.com/api/working-with-extensions/publishing-extension

Despite this, the npm run build command will create a .vsix file, which is used to install the
plugin. The .vsix file is also what’s published on the market, so most of the preparation for
publishing has been done.

Another reason we decided to not publish the extension is because it requires a token from a
Azure DevOps account and we assumed VerCors does not want their plugin to be owned by
one of our accounts.

Developer manual
When you clone the repository from github and make your amazing new changes, running it
immediately would result in an erroneous mess. First, some small installations have to be done.

Running
You start by running npm install to install all used packages. Afterwards, you run npm run
compile to compile the project. When this is done, the extension can be executed. The
extension can also be run from VS Code “Debug and Run” tab where debugging can be started
(F5). Running this will automatically compile and run the plugin.

Building
The plugin can be built using npm run build. This will bundle the code and create a
packaged .vsix file, which can be installed into VS Code using:

code --install-extension vercorsplugin-0.0.1.vsix

Testing
The tests need a working installation of VerCors. VerCors has to be installed or linked using a
symlink to a folder with the path client/src/test/fakeVercors as shown in Figure 19. To
create a symlink, for example:

Windows (cmd.exe or prepend with cmd /c in PowerShell):

mklink /D “.../client/src/test/fakeVercors” “.../vercors”

Unix:

ln -s “.../vercors” “.../client/src/test/fakeVercors”

Manually changing the VerCors installation location for testing is also possible. Iit can be done
by changing the variable vercorsPath in client/src/test/mock-methods.ts.

37

38

Appendix C - Initial Planning

The VerCors plugin project is large. That is why we have divided the project into several tracks,
as mentioned previously: Extending the IDE, integrating the VerCors tool in VSC and visualising
the tool's output.

We have decided to use an agile methodology, and more specifically scrum, to develop the
project, as there will be weekly meetings with the client and we’ll be able to respond to feedback
appropriately. Sprints will last two weeks each, with the exception of sprint 4, which will be three
weeks due to the extended quarter duration. The following table shows a rough estimation of
what tasks we want to have done by then.

Sprint 1
(26/02 to 08/03)

Sprint 2
(11/03 to 22/03)

Sprint 3 and 4
(25/03 to 26/04)

Extending IDE Syntax highlighting PVL

Adding go-to definition

Refactoring PVL code

Code generation for
templates

Adding VerCors shortcuts

Code suggestion

Integrating
VerCors

Verify Java and PVL files

Checkboxes for
command line options

Stop option for running
process

Verify c, OpenMP, and
OpenCL files

Keeping track of file
configurations

Choose VerCors version

Visualising Output Error window in plugin
screen

Link errors to the places in
the code

Progress bar

VerCors progress status

Sprint 1
In the first sprint we are planning to incorporate the feedback on the current project proposal,
and if needed tweak the planning a bit so that new goals are added or unnecessary goals are
shut down early. We plan to start by extending the IDE and integrating the VerCors tool into the
IDE. The main focus for the IDE part will be adding the IDE features syntax highlighting and
adding a go-to definition. To Integrate the VerCors tool in VSC we add the functionalities to
verify both PVL files and Java files. We will also add checkboxes for all command line options,
and add a stop option to terminate any running VerCors processes. For the visualising output

39

part of the project, we cannot do as much since the tool is not fully integrated yet. We will start
with making a designated window in the plugin screen where the errors should show up.

Sprint 2
After a good foundation is made for the whole plugin in the first sprint we can build upon this by
adding options for code generation and refactoring for the IDE part. For the integration part, we
plan to add support for the other languages that work with VerCors. Also to make the system
that keeps track of the run configuration for the tool for each file. Now we are a bit further with
the integration part, we can now explore linking the tool’s verification results to the pl

Sprint 3 & 4
As scrum is an iterative process, it is hard to concretely plan what we will be working on that far
down the line besides the leftover features. As such, it’s mostly left as to-be-determined.

40

Appendix D - Snippets List

For all snippets, if the prefix is typed the fitting code structure will be generated, so called
snippets. If a snippet is generated the user can fill in the predefined blank spots and with each
press of the tab button, the curson moves to the next spot. In the list below these cursor spots
are noted with a dollar sign ($) followed by a number, which stands for the order in which the
user fills in the blanks.

Prefix Snippet

for (\forall int ${1:i} ; ${2:0} <= ${1:i} && ${1:i} < $3);

perm Perm(this.$1, $2);

old \old($1)

res resource $1() = $2;

pure pure $1($2) = $3;

\un \unfolding $1 \in $2;

pointer \pointer($1, $2, $3);

41

